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Abstract— Process of free-convection mass transfer from horizontal plates has been analysed theoretically. For
two opposite orientations of active surface of semi-infinite strip delivering the mass downwards, viz. upward
position and the downward one, the corresponding easily applicable correlation equations, in dependence on
two characteristic parameters: Sc¢, Schmidt number and y,,, initial concentration on the plate, have been obtained.
In the case of the upward orientation of the active surface the solution has been carried out by making use
of the integral treatment, whereas for the downward orientation of active surface the similarity solution has
been used. The results obtained for both characteristic cases studied are very close to each other. The comparison
with the experimental data available shows a quite good agreement.

NOMENCLATURE

constant defined by equation (29);
a, half of plate length;

C, molar concentration;

D, kinematic diffusivity;

F, function defined by equation (44);

>

Grp, Grashof number defined by equation (16);
g, acceleration due to gravity;

M, molecular mass;

P, pressure;

P, pressure defined by equations (5) and (39);
Py, constant;

Ran, modified Rayleigh number = (Gr, Sc);

Sc, Schmidt number = v/D;

Sh, Sherwood number = f4a/D,C;

u, independent variable defined by

equation (31);
Uy, velocity component in the direction of x axis;
¥V, mole fraction;

Vi, independent variable defined by
equation (22).

Greek symbols
a, quantity defined by equation (8);

B, mass-transfer coefficient;
d, thickness of boundary layer;
1, independent variable in equations (13), (14)
and (45);
3, velocity component in the direction of y axis;
v, kinematic viscosity;
o, density;
o, function defined by equation (44);
VR stream function.
Subscripts
A, refers to the diffusing component;
0, refers to the plate surface;
20, refers to the medium.

The horizontal bat over the individual symbols denotes
dimensionless quautities.
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1. INTRODUCTION

THE FREE convection mass transfer from horizontal
plates has been hitherto the subject of only few
experimental works. One of the earliest contributions
to this problem was the study made by Wragg [1].
Natural convection mass-transfer phenomena were
investigated by making use of the electrochemical
technique. The mass-transfer coefficient was deter-
mined by measurements of limiting currents for the
deposition of copper on copper electrodes from
acidified cupric sulphate solutions. The correlation
equations for the mean Sherwood number, in
dependence on modified Rayleigh number Ra, =
Sc- Gr,,, were as follows:

Sh = 0.64 (Ra,)*** for
Sh =0.16 (Ra,,)°3* for

10* < Ra,, <2.5%x 107
2.5% 10" € Ra,, < 10'2

Wragg and Loomba [2], using the improved experi-
mental apparatus, have extended the previous research
[1]. The data obtained were correlated by the
equations:

Sh=0.75(Ra,)*?* for 3x10* < Ra, <3x107

and

Sh =0.18 (Ra,)*** for 3x107 < Ra, < 10'2.
Similar results, obtained by the same electrochemical
technique, are presented in the work of Fenech and
Tobias [3]. For high values of the product Sc-Gry,
ranging from 10® to 1.4 x 10'2, the mean Sherwood
number was given by the relationship: Sh=0.19
(Se Grp)'/3. All the works mentioned above refer to the
case of horizontal plates with active surface facing
upwards and delivering the mass in the same direction.
Bandrowski et al. [4, 5] made an attempt of
comparing the experimental results for horizontal
plates with active surface directed upwards and down-
wards. Carrying out the studies on free convection mass
transfer from rectangular horizontal plates covered
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with naphthalene, the authors have presented the
following correlation equations:
(i) for a plate facing downwards and delivering the
mass downwards:

Sh = 0.69(Sc Gr,,)"22> 4)

(ii) fora plate facing upwards and delivering the mass
downwards:

Sh=1.27(ScGrp)"'°" (5)

The values of the product Sc¢- Gr,, in both cases ranged
from 3 x 103 to 2.5 x 10%.

Recently Goldstein et al. [6] performed the experi-
ments on natural convection mass transfer adjacent to
horizontal plane surface, using the naphthalene
sublimation technique. For the studied case of plates
with active surface facing downwards and delivering
the mass downwards, three geometries, viz. circular,
square and rectangular plates were employed in the
tests. A common correlation for all these planforms was
obtained owing to the use of characteristic lengths equal
to the ratio of the surface area to the perimeter.

The corresponding correlation equations arc:

Sh =059 (Ra,)"* for Rua, > 200
Sh=096(Ra,)" " for Ra, < 200*

The aim of the present paper is to solve the mentioned
problem theoretically. The whole work will be divided
into two parts. viz.: (i) free convection mass transfer
from horizontal plates with active surface facing
upwards and delivering the mass downwards, and
(i) free convection mass transfer from horizontal plates
with active surface facing downwards and delivering
the mass downwards.

2. THE SOLUTION FOR THE UPWARD-FACING PLATES

In this case the concentration-induced density
differences give rise to buoyancy forces which produce
natural convection motion initiated in the plate centre
and continued towards plated edges. The generated
boundary-layer thickness reaches its maximum at the
plate centre and decreases along the plate to achieve the
minimum value at the edges. Taking into account the
coordinate system shown in Fig. 1 and assuming the
boundary-layer approximation, the steady-state mo-
mentum-, continuity-, and diffusion-equations can be
written as follows:

- -~ ' ~72
cu cu 1 0oP Cu

U F I = o v (D
X cy P Cx cys
8
0= ———glp—p,) (2)
o)
cu A9
—+— =0 (3)
cX O}
'y oy («3\‘
DL Q—i =Dy ’;’-; 4
¢ 'y cy”

* After sending the manuscript of this work to the Editor.
Lloyd and Moran [11] published a paper, being the result
of mass-transfer studies (carried out by means of an electro-
chemical method) for horizontal plates with the active
surface facing upwards. The obtained relationship in the
form Sh = 0.54 x Ray® for 2.2 x 10* € Ra,, < 8 x 10° is
very close to the equation of Goldstein er al. [6].
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F16G. 1. Scheme of the boundary layer.

where
P =P+gp.yv+5F. 5
The corresponding boundary conditions are
cu cu
V= O; u=0 3= \")()5 L (T) s V4= VYa, (6)
cy cy/o
Cu Cya
yoo; u=3-=0, ——0, y,-0, S0 (7)
Cy Cy

Density differences in equation (2) can be expressed as

M%\h% = Yald. (])
Substituting P’, which is obtained by integrating (2)
from y to & with respect to y, into (1), and regarding (8),
we obtain

P—=Px» = )a

S A ] a2

du  du C c*u
U=—+J:—= —ga_— | yady+v—s. (9)
ox oy Cx )y cy

Adding (9) to (3), integrating from O to & with respect
to y and allowing for the boundary conditions (6) and
(7), we get

{ pl o fo o ou
| wrdy=—ga—| dy| yady—v[o-). (10
PXL ’ T ;o g /o 1o

Proceeding in the same way with (4), we can finally

write
A (e A
& aw
:J {(u-yaddy—ya, 90 = —Dy <?>
X

0 cy
] D4 (dy‘;)
G = —- =2
=y, \dy Jo

After assumption of velocity and concentration profiles
given by Eckert [7]

(1)

/0

where

(12)

u=u.n(l—n)? (13)
va=ya,(l—n) (14)
and introduction of dimensionless variables
V=L = upa(Gry Se) 3 L
R R " D,’
S 15| <
d = o(Gry, Sc)” 7 - (15)
a
where
Grp = yagoa®iv? (16)
equations (10) and (11) reduce to
L1 (@26) . do? i, 17)
({0 = — 17— — =
5 S5edx Pk TS (
d (.8) 60 | 18)
(U 0) =
EEAA P (
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The above equations are first-order, non-linear
differential equations. Thus, their solution requires two
boundary conditions. One of them is determined by
symmetry at X =0, ie. where the flow begins, which
explicitly means that velocity at the plate centre must
be zero.

ix(0) = 0. (19)
The second boundary condition involves the boundary-
layer depth at the plate edge.

Following the method described by Clifton and
Chapman [8], the use was made of the analogy
between the boundary-layer flow and the fiow in open
channels. Assuming the minimum boundary-layer
depth at the plate edge obtained by application of the
minimum allowable energy of flowing stream (details
of derivation can be found in [8]), for dimensionless
plate length ¥ at plate edge (e.g. when Y= 1} the
boundary-layer thickness can be expressed as:

< 540 Tdx\2 |3
O(l)—[(l—yAn)ZSC <J0 ?)i\ )

Thus, (20) is the second boundary condition for
equations (17} and (18) to be solved. The mean
Sherwood number based on the plate half-length g, has
the form

(20)

_ Paa s ldx
Sh—D C—2(GrmSC) 0—5—.

4"

21

As can be seen from (21), the determination of mass-
transfer coefficient requires the knowledge of the
variation of boundary layer thickness along the plate
length: & = §(%).

Proceeding to the solution of (17) and (18), let us
introduce a new independent variable:

y1= i d 22
Equations (17) and (18) become
do 120 V1
o= 1 T (2
dx ( ot 0556)@%—105&53 @3)
dy, 60
B 24
a5 " Si—ya) 29
with the boundary conditions
y1(0)=0 (25
Sm—( : 1/3[‘0)]2’3 26)
“\20sc) Y ¢

The last condition results from substitation of integral
form of equations (19}{20). When the Lagrange method
of solving differential equations is employed to just-
derived boundary problem, we can write

L l0sASe o _5_]*_[}.]3}
= 56—4) (o] {[5(0) 5(0)) @D
~ 105ASC{[5(0)]3AA.5,,,2_5}

72

* T 6(3—A)

(28)
where

e 120
T 12041058c(1—ya,)

29

In order to find the unknown function d = 3(%),
equations (27) and (23) can be combined to yield

45 6( 120
dX \l=ya

1058cd o -\ [ 87 [ & 3)
=g} (5] L)

105ScA__ (T o 1" [o] o

Goa O {[8@} ”LVO‘)] }"’OS S

Let us introduce a new independent variable

ia2p §@}3—A_ 3-4
sin t_[5(0) =U .

The corresponding boundary conditions have now the
form

+ 105 Sc)

(30)

(1)

U)=1 (32)

204 \He-a
== . 3
v (24+13A> (33)

Separating the variables in (30), after substituting (31)
and integrating from U (1) to U (0} with respect to U,
we have

sin [yt -] A
(-— —+sin?¢ Jsin?A "M gy
R 24

1,2
(G |
\2sw134

ni2 4 S
J' ~“+sin21>sin(2“*" W3- gy
o214

w{(is) | B4

The relationship (34) obtained by means of simplifying
substitution (31), is the final solution of problem under
consideration. Now, when the integration is performed
numerically on the computer, from the value defined
by (33), with given step size, to U = I, the profile of
boundary layer thickness can be found with any
accuracy.

=1~

2.1. Results and conclusions

The problem of free-convection mass transfer from
horizontal plates with active surface facing upwards
and delivering the mass downwards has been
investigated analytically by approximate integral treat-
ment. The boundary-layer partial differential equations
have been transformed to the set of ordinary differential
ones, by integrating them across the boundary layer
with assumed velocity and concentration profiles.
Solution of resulting equations has been performed
under the condition of the minimum allowable energy
of flowing stream over the plate edge. Introduction of
boundary condition at the plate edge, proposed by
Cliftor and Chapman [8], being the application of
open-channel flow to the determination of minimum
boundary-layer thickness, allowed to predict the finite
boundary-layer depth at the plate edge. This minimum
thickness formula seems to be the truest reflection
of physical realities of the problem discussed; it enables
a thorough study of velocity and concentration fields
over the plate length.
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At the same time the often-assumed zero boundary-
layer thickness simplification at the edges, widespread
in analogous heat-transfer case, is avoided.

From the set of derived equations (17), (18) and
boundary conditions (19), (20) it follows that the
determination of unknown functions i, = u,(X) and
3 =3(X) depends on particular combination of
parameters: Schmidt number Sc and initial concentra-
tion on the plate v,,. It should be emphasized that
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appearing in the mass balance equation. Therefore,
allowance for both specified parameters leads to many
variants of functions to be sought, the amount of which
is equal to the second power of respective heat transfer
solutions characterized only by one parameter, viz.
Prandtl number.

In this paper all combinations of S¢ and y4,. shown
in Table 1, have been taken into account. The tigures,
based on computer output sheets, do not include all

2 | i | !
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FiG. 2. Thickness of the boundary layer for S¢ = 2.5.
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F1G. 3. Thickness of the boundary layer for y,, = 0.1.

the appearance of y,, parameter is characteristic only
for mass transfer and in the radical way distinguishes
free-convection mass-transfer equations from cor-
responding heat-transfer ones. This dissimilarity arises
directly from the difference in definition of the
boundary conditions on the plate surface in both
transfer phenomena. When the heat transfer is con-
sidered, the vertical velocity component on the plate
surface must be zero, whereas in mass-transfer case
there occurs a constant vertical velocity component,

obtained solutions, because of similar behaviour of
individual solution pairs.

Table 1. Values of the parameters Sc and y 4,

Sc { 2.5 10 100 1000 2500
0.2 0.2 0.2 0.2 0.2 0.2
. 0.1 0.1 0.1 0.1 0.1 0.1
Y49 001 0.01 0.01 0.01 0.01 0.01
0.0005 0.0005 0.0005 0005 0.0005 0.0005
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As a solution pair, full set of results of any row and
any column in parameters’ Table 1, is understood. So,
it may be said that the presented figures are
representative in the whole range of parameters Sc and
V4, The analysis of the obtained results, permits to
draw up the following conclusions:
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small Schmidt numbers at y 4, = const., and in the range
of high y,, values for Sc = const. It can be seen from
Fig. 3 that boundary-layer thickness approaches zero
at the limit of Sc¢ — co.

2. Figures 4 and 5 show the distributions of local
Sherwood numbers along dimensionless plate length

Sh/(Gr,Sc)s

F1G. 4. Variation of the local Sherwood number along the plate length x for Sc=2.5.
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F1G. 5. Variation of the local Sherwood number along the plate length x for y4, = 0.1.

1. Figures 2 and 3 show the dependence of boundary-
layer thickness profile on the parameters Sc and y,4,.
When the value of Sc is fixed (e.g. 2.5), the rise of the
concentration y 4, causes the increase of boundary-layer
thickness; on the other hand, when y,, remains
constant, boundary-layer thickness decreases with the
Schmidt number increase. Boundary-layer thickness
variation is particularly accentuated in the range of

HMT Vol. 19. No. §--B

X. For Sc being constant the increase of initial
concentration y4, brings about the decrease in
Sherwood number values; when y,, = const. the local
Sherwood number increases with the rise of Schmidt
number. The high values of Sherwood numbers in the
neighbourhood of plate leading edges accentuate the
significant influence of finite boundary-layer thickness
depth on the mass transfer coefficient.
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F1G. 7. Velocity profile in the boundary layer for S¢ = 100 and vy, = 0.1.

3. The velocity distribution in the boundary layer
presented in Figs. 6-8, for the exemplary combinations
Sc/ya, = 2.5/0.1,100/0.1 and 100/0.01, shows distinctly
the essential effect of plate edges on the velocity profile.
It is easy to observe that the main velocity increase
appears above the dimensionless plate length x = 0.95,
practically at direct vicinity of leading edges. This fact
results from abrupt decrease of boundary-layer thick-
ness above the plate edge, revealed in Figs. 7 and 8
with steep curve slopes near X = 1. For increasing
values of Schmidt number (Figs. 6, 7) the velocity goes
up according to boundary layer thickness decrease on
the whole plate length. The effect of initial concen-
tration y., under condition Sc = const. is very slight
and—as it can be seen from Figs. 7 and 8—the velocity
increases to a small extent when the values of y,, in-
crease. Practically, these variations have such a small

order of magnitude that without making any serious
error they can be neglected. The above conclusions are
valid for all the pairs of solutions.

4. The concentration profile in boundary layer,
shown in Figs. 9-11, displays a similar trend as the
velocity distribution (cf. above).

Also here, the increase of concentration gradient
near the plate edge, in consequence with minimum
boundary-layer thickness, was observed. When
Schmidt numbers are getting larger, concentration
distribution curves become more steep, that means
that the reduction of boundary layer thickness causes
more violent concentration changes in any arbitrary
point of the plate length. Figs. 10 and 11 present
concentration profiles for Sc/y4, = 100/0.1 and
100/0.01, respectively. These figures indicate that the
decrease of initial concentration y4, gives occasion to
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FiG. 11. Variation of the concentration profile in the boundary layer for S¢ = 100 and y,, = 0.01.

small increase of concentration gradient; practically
it seems to be meaningless. The above remarks hold for
all obtained pairs of solutions.

5. Both local and average Sherwood numbers are
proportional to one-fifth power of modified Rayleigh
number; the values of constants appearing in cor-
relation equations, for all pairs of solutions, are given
in Table 2. As it can be seen from this table, for constant
value of Schmidt number, the average mass-transfer
coefficient increases when the initial concentration on
the plate y,, decreases. On the other hand, for any row

Table 2. Values of the constant in the correlation equation
for the mean Sherwood number, for individual combinations
of parameters Sc and y 4,

Sc
Yo 1 2.5 10 100 1000 2500
0.2 0.4355 0.4925 0.5601 0.5905 0.6024 0.6032
0.1 0.4533 0.5131 0.5744 06169 0.6233 0.6236
0.01 0.4687 0.5267 0.5911 0.6242 0.6306 0.6318
0.0005 0.4701 0.5442 0.5917 0.6247 0.6314 0.6327

of Table 2 (y,, = const.) there is easily visible the
recurring tendency of Sherwood number increase with
the increase of Schmidt number up to Sc = 100,
becoming almost constant in the range of Sc > 100. The
comparison of the results presented above for free-
convection mass transfer from horizontal plates facing
upwards and general conclusions concerning the
analysed mass-transfer phenomena will be made in
connection with the results of the opposite variant,
viz. when the plate is facing downwards, in the next
part of this paper.

3. THE SOLUTION FOR THE
DOWNWARD-FACING PLATES
If the plate has the active surface directed down-
wards and the mass is delivered also downwards, the
derivation of the mathematical model is connected not
only with the consequence of direction change of

buoyancy forces acting, but also with quite different
ways of problem analysis. The character of boundary-
layer flow initiated at the plate edge and continued
towards the plate centre with imposed boundary con-
ditions, establishes a typical example of the possibility
of using the similarity solutions method, presented in
detail by Hansen [9].

When the previously assumed Boussinesq approxi-
mations, concerning density, will be adapted to the
present variant of free-convection mass transfer from
horizontal plates, schematically shown in Fig. 12, the

Boundary
layer

FiG. 12. Scheme of the boundary layer.

governing equations of steady two-dimensional flow
become:

cu . ou 10P N %y (35)
— J— = —— v— 3
v éy pdx Oyt
——T+9(P’“Pm)=0 (36)
cy
ou  ou
—+—=0 (37)
ox Oy
Oya Cya ya
+3 =Dy 38
Yox Ty TG (38)
where
P=P—gp,y+P. (39)
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Equation (35), with allowance for (8), after differentiat-
ing with respect to y, can be expressed as:
2?u 8%u dys . u
Yo = —ga—+3——
Ox 6y+ ay? 9% 5% ay?
The corresponding boundary conditions for (40), (37)
and (38), are given by

u

(40)

y=0; u=0, $=9, y=y4 (41)
ou
y—oow; u—0, ys—0, 5—»0. (42)
Introducing the stream function
0 d
u= ('Tlle ; 3= —5% (43)
and using the following similarity transformation
Y =x>F(n), ya= ya, o) (44)
where
n=yx"*? (45)

the velocity components appearing in equations (37),
(38) and (40) can be written:

u=x"Fn) (46)

§ = —4x7°[3F(n)~2nF'(n)]. 47)

Inserting (46) and (47) into partial differential equations

(38) and (40), we obtain a system of ordinary

differential equations, which characterizes the discussed
mass-transfer case:

SVF////+3F///F+FHF! = —zgayAO ¢!n (48)

5D, ¢"+3F¢ =0. (49)

To avoid dimensional values and, at the same time to

get the solution in the form of well-known similarity

groups, let us introduce into the above equations the
following dimensionless functions:

_ v—3 1/5 V2 -1/5
F=<SC4 > F, ﬁ:(Sc"l ) n. (50)
gx YA 9s VAo
Equations (48) and (49) become as follows:
5ScF +3F"F+ F'F = —28cdi  (51)
5" +3Fd =0 (52)
The corresponding conditions are: for 7 =0
Fnt il 5 0 Yy
O =1; FO)=0; FO)=2 2" §(0) (53)
31 —Yao
forq— o
) —-0; Fm—0; F'n)—0. (54)

The last condition for # =0 has an implicit form,
resulting from the comparison of relationship (12) with
equation (47). The local Sherwood number is obtained
from
d
Bayan= ‘DAC<ﬂ> = —D4CyadO)x~¥*  (55)
dy 0
which, combined with (50) and integrated along the
half-plate length, gives the average Sherwood number

over the plate surface, appropriate for examined mass-
transfer case.

_Paa
- DA ° C
The solution of (51) and (52) with corresponding
boundary conditions (53) and (54) has been carried out
numerically.

The method of adjoints used in the present work, is
based on the integration of a set of differential
equations adjoined with the equations being solved.
The details associated with this method can be found
in the work of Roberts and Shipman [10].

Sh

= —3(Grn 5¢)'*¢(0). (56)

3.1. Results and discussion

The second case of horizontal plate orientation, viz.
the active surface facing downwards, has been solved
numerically by means of the method of adjoints. The
governing equations have been transformed from their
initial partial form to the ordinary differential ones by
making use of the similarity analysis. Finally, the
equations have been reduced to the system of six
first-order, non-linear, differential equations and—
with the corresponding boundary conditions—were
subject to the numerical treatment. The choice of the
method of adjoints was inspired by the possibility of
using well-known procedures, such as the Runge-Kutta
method, or matrix inversion, during its realization on
the computer, and by the fact that it converges
quadratically, similar to the Newton-Raphson method.

Taking into account that the calculations are time-
consuming (e.g. 19 iterations took 3 h or so), the results
were obtained only for combinations of Sc and y,,
parameters enclosed in the second column and third
row of Table 1. At the same time, the variation of
velocity profile F’ and concentration ¢, shown in Figs.
13 and 14, should be treated as representative of plots
for all the combinations of parameters because of small
discrepancies between individual values.

The principal results can be summarized as follows:

1. The velocity distribution in the boundary layer
has the same character as in the previously studied

0.3—

0.2

I | Iy

FiG. 13. Velocity profile in the boundary layer for
Sc =100 and y,, = 0.01.
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Fi1G. 14. Concentration profile in the boundary
layer for Sc = 100 and y,, = 0.0L.

first case. Comparing the values of function F’ given
in Table 3, one can see that for increasing Schmidt
numbers the velocity slightly decreases. On the other
hand, when the values of Schmidt number remain
constant, the rise of initial concentration brings about
the increase of the velocity, but all these changes are
rather small, so the influence of Sc and y 4, parameters
on the boundary-layer velocity can be neglected.

coefficient for Schmidt numbers growing up. slightly
decreases, becoming almost constant in the range of
Sc > 100. So, it seems to be quite reasonable to treat
the just-discussed mass-transfer problem as in-
dependent of the values of Schmidt numbers.

4. COMPARISON OF THEORETICAL AND
EXPERIMENTAL RESULTS

Figure 15 shows the lines representative for the
experimental results obtained by authors of the papers
[2]. [4-6], as well as the theorctical data predicted
(dashed lines), presented here for two variants of free-
convection mass transfer from horizontal plates. In
order to compare most adequately the experimental
and theoretical results, the theoretically calculated
lines have been referred to the parameter set: S¢ = 2.5
and y., = 0.0005, since these values arc close to the
conditions, under which the experiments with sublimat-
ing naphthalene have been performed. The great
similarity between the experimental resuits given in [4]
and [5] and the theoretical ones, presented in this
paper, is very well pronounced.

The agreement of the correlation equations for the
upper and lower active surface of horizontal plates,
obtained in [4] and [5], corresponds exactly to the
almost identical theoretical results for both plate
orientation cases.

Table 3
For Vi, =901 B -

Sc F(1)x 102 (1) x 102 F(0) x 10* Fr(0)x 10° F70) x 10? PO x10°
1 31.258 66.720 —56.546 52.682 —43.841 —~33.588
25 30.449 66.874 —56.262 50.522 ~41.207 —33.419

10 29.946 66.977 —56.074 49.339 ~39.880 —33.308

100 29.785 67.010 —56.014 48.975 —39.484 —33.272
1000 29.769 67.014 - 56.008 48.939 —39.445 —33.268
2500 29.767 67.014 —56.007 48.936 —39.442 —33.268

For S¢ =235 )

Vo F(1yx 102 é(1)x 107 F(0)x 10* F(0)x 10? F(0)x 102 ¢'(0)x 107
0.2 31.445 69.333 ~1244.2 51.298 —40.292 —29.862
0.1 30.903 67.979 —588.83 50.885 —40.811 —31.797
0.01 30.449 66.874 -56.262 50.522 —41.207 ~33.419
0.0005 30.402 66.758 —2.8005 50.482 —41.244 —33.589

Note: The value 7 = | in the functions F'(5j) and () has been chosen arbitrarily for comparison

purposes.

2. The concentration variation in the boundary-
layer behaves similarly as in the first variant of the
plate orientation. From the values of function P,
specified in Table 3, it can be seen that when Schmidt
number values grow larger, the concentration in the
boundary layer slightly increases (concentration
gradient decreases); also the increase of y,, causes the
increase of the amount of diffusing component in the
boundary layer.

3. Local and average Sherwood numbers are
proportional to one-fifth power of the product Sc - Gr.
The values of constant associated with correlation
equation increase with y,, diminishing. When y,, has
a constant value equal to 0.01, the mass-transfer

The lower values of the mass-transfer coefficient
calculated theoretically, compared to the experimental
data, can be explained by the approximate mathe-
matical model being considered. The restriction of the
analysis to the case of two-dimensional flow is directly
connected with the disregard of all leading edges,
which—as it has been previously pointed out—have
a significant effect on the value of mean Sherwood
number.

The scantiness of experimental data concerning the
free-convection mass-transfer cases discussed, does not
allow to perform a more extensive analysis of mass
transfer from horizontal plates, so there is a necessity
for further experimental research.
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TRANSFERT MASSIQUE EN CONVECTION NATURELLE
SUR DES PLAQUES HORIZONTALES

Résumé—On étudie par voie théorique les processus de transfert de masse en convection libre sur des
plaques horizontales. Dans les deux orientations opposées de la surface active de la plaque semi-infinie
transférant la masse, cC'est a dire orientation vers le haut et vers le bas, on a obtenu les lois de
corrélation correspondantes d’application simple qui dépendent de deux paramétres caractéristiques:
Sc (nombre de Schmidt) et y,, (concentration initiale sur la plaque). Dans le cas de l'orientation de la
surface active vers le haut, la solution a été obtenue par utilisation d’un traitement intégral, tandis que
dans le cas d’une orientation dirigée vers le bas la solution en similitude a été utilisée. Les résultats
obtenus dans chacun des deux cas caractéristiques étudiés sont trés proches I'un de 'autre. La comparaison
avec les données expérimentales disponsibles a fourni un trés bon accord.

STOFFUBERGANG VON WAAGERECHTEN PLATTEN BEI FREIER KONVEKTION

Zusammenfassung—Die Stoffiibertragung von waagerechten Platten durch freie Konvektion wurde
theoretisch analysiert. Fiir zwei entgegengesetzte Richtungen der massenabgebenden Oberflidche eines
halbunendlichen Streifens—aufwiirts und abwérts—wurden die Korrelationsbeziehungen in Abhingigkeit
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von zwei charakteristischen Parametern, S¢—Schmidt-Zahl und y.,—Anfangskonzentration an der
Oberfliche, erhalten. Fir die aufwirtsgerichtete aktive Oberfliche wurde die Losung aufgrund einer
Integralbehandlung erhalten, wihrend fir die abwirtsgerichtete aktive Oberfldche eine Ahnlichkeitsldsung
herangezogen wurde. Die Ergebnisse der beiden untersuchten Fille sind einander sehr dhnlich. Der
Vergleich mit experimentellen Ergebnissen zeigt eine ziemlich gute Ubereinstimmung.

MEPEHOC MACCH! OT MOPM30HTAJIbHBIX [UIACTHUH [1PU CBOBO/{HON
KOHBEKLIMU

ARHOTAUMA — TEOPETHYECKH MCCASA0BAH MPOLECC MEPEHOCa MacChl OT TOPH3IOHTAMbHBIX MACTHH
npu csobonaHol kousekuuu. Jns ABYX NPOTHBONOAOXKHBIX HanpapneHul noaybeckouednoH nsac-
THHBI TIONYYEHBI COOTBETCTBYIOLLME KOPPEJALMOHHBIE COOTHOWEHHS, NPEACTABAAIOWMNE 3ABHCH-
MOCTb KO3(DEdHUKMENTA HEPeHOca Macehi OT ABYX XapakTepHsix papamerpos: kputepus lmunra,
SC, M P4, — HAYAJIBHON KOHLEHTPALMM Ha NiacTHHe. B cnyyae akTupnoi nosepxHocTy, obpatiesHon
BBEPX, PELIEHHE MOSYYEHO HHTErPa/ibHbiM METOAOM, @ [/ AaKTHBHOU MOBEPXHOCTH, obpaltentoi
BHM3, NpuMeHseTcs Metoa noaolbuimx pewexuit. [Monydenubie pedynpTaTht ans obowx cnyuaes
coenanatoT odexb Bau3ko. CpaBHEHHE UX C HMEIOLIMMHCS KCIIEPHMEHTANbHLIMM NaHHbLIMH daeT
AOBOJILHO XOPOLIEE COOTBETCTBHE.



