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Abstract-Process of free-convection mass transfer from horizontal plates has been analysed theoretically. For 
two opposite orientations of active surface of semi-infinite strip delivering the mass downwards, viz. upward 
position and the downward one, the corresponding easily applicable correlation equations, in dependence on 
two characteristic parameters: SC, Schmidt number and yAor initial concentration on the plate, have been obtained. 
In the case of the upward orientation of the active surface the solution has been carried out by making use 
of the integral treatment, whereas for the downward orientation of active surface the similarity solution has 
been used. The results obtained for both characteristic cases studied are very close to each other. The comparison 

with the experimental data available shows a quite good agreement 
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NOMENCLATURE 

constant defined by equation (29); 
half of plate length; 

molar concentration; 
kinematic diffusivity; 
function defined by equation (44); 
Grashof number defined by equation (16); 

acceleration due to gravity; 

molecular mass ; 
pressure; 

pressure defined by equations (5) and (39); 
constant; 
modified Rayleigh number = (Gr, SC); 

Schmidt number = v/D.,, ; 
Sherwood number = PA a/DA C; 
independent variable defined by 

equation (31); 
velocity component in the direction of x axis; 
mole fraction; 
independent variable defined by 
equation (22). 

Greek symbols 

quantity defined by equation (8); 
mass-transfer coefficient; 

thickness of boundary layer; 
independent variable in equations (13), (14) 

and (45); 
ielocity component in the direction of y axis; 
kinematic viscosity; 

density; 
function defined by equation (44); 

stream function. 

Subscripts 

A, refers to the diffusing component; 

0, refers to the plate surface; 

ao, refers to the medium. 

The horizontal bar over the individual symbbls denotes 
dimensionless qua&ties. 

1. INTRODUCTION 

THE FREE convection mass transfer from horizontal 

plates has been hitherto the subject of only few 
experimental works. One of the earliest contributions 

to this problem was the study made by Wragg [l]. 
Natural convection mass-transfer phenomena were 
investigated by making use of the electrochemical 

technique. The mass-transfer coefficient was deter- 
mined by measurements of limiting currents for the 

deposition of copper on copper electrodes from 
acidified cupric sulphate solutions. The correlation 
equations for the mean Sherwood number, in 
dependence on modified Rayleigh number Ra, = 
SC. Gr,, were as follows: 

Sh = 0.64 (Ra,,,)‘= for lo4 d Ra, d 2.5 x IO’ 

Sh = 0.16 (Ru,)‘.~~ for 2.5 x 10’ < RN, < 10” 

Wragg and Loomba [2], using the improved experi- 

mental apparatus, have extended the previous research 
[l]. The data obtained were correlated by the 
equations : 

Sh = 0.75 (Ru,,)~.*~ for 3 x IO4 < Ra, < 3 x 10’ 

and 

Sh = 0.18 (Ra,)0,33 for 3 x IO’ < Ru, d IO”. 

Similar results, obtained by the same electrochemical 
technique, are presented in the work of Fenech and 

Tobias [3]. For high values of the product Sc. Gr,, 
ranging from 10’ to 1.4 x IO’*, the mean Sherwood 
number was given by the relationship: Sh = 0.19 
(SC Gr,)li3. All the works mentioned above refer to the 
case of horizontal plates with active surface facing 
upwards and delivering the mass in the sache direction. 

Bandrowski et al. [4,’ 51 made an -attempt of 
cornpacing the experimental results for horizontal 
plates with active surface directed upwards and down- 
wards. Carrying out the studies on free convection mass 
transfer from rectangular horizontal plates covered 
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: 
Y 

P > P, 

with naphthalene. the authors have presented the 
following correlation equations : 

(i) for a plate facing downwards and delivering the 

mass downwards: 

S/r = 0.69 (SC Gr ,)1 )“=’ (4) 

(ii) for a plate facing upwards and delivering the mass 

downwards: 

S/I = I .27 (SC Gr”,)” I”“. (5) 

The values of the product SC. Gr, in both cases ranged 
from 3 x IO3 to 2.5 x 10’. 

Recently Goldstein (II r,/. [6] performed the experi- 

ments on natural convection mass transfer adjacent to 

horizontal plane surface, using the naphthalene 
sublimation technique. For the studied case of plates 
with active surface facing downwards and delivering 

the mass downwards, three geometries, viz. circular. 

square and rectangular plates were employed in the 
tests. A common correlation for all these planforms was 
obtained owing,to the use ofcharacteristic lengths equal 
to the ratio of the surface area to the perimeter. 

The corresponding correlation equations arc: 

Sh = 0.59 (Ru,)’ s for Rti, > 200 

S/I = 0.96 (Rtr,)’ ” for Rn, < 100 ? 

The aim of the present paper is to solve the mentioned 
problem theoretically. The whole work will be divided 

into two parts. viz.: (i) free convection mass transfer 
from horizontal plates with active surface facing 
upwards and delivering the mass downwards. and 
(ii) free convection mass transfer from horizontal plates 

with active surface facing downwards and delivering 
the mass downwards. 

2. THE SOLL’TION FOR THE UPWARD-FACING PLATES 

In this case the concentration-induced density 
differences give rise to buoyancy forces which produce 
natural convection motion initiated in the plate centre 
and continued towards plated edges. The generated 

boundary-layer thickness reaches its maximum at the 
plate centre and decreases along the plate to achieve the 
minimum value at the edges. Taking into account the 
coordinate system shown in Fig. 1 and assuming the 
boundary-layer approximation. the steady-state mo- 
mentum-, continuity-. and diffusion-equations can be 

written as follows: 

(4) 

*After sending the manuscript of this work to the Editor. 
Lloyd and Moran [II] published a paper, being the result 
of mass-transfer studies (carried out by means of an electro- 
chemical method) for horizontal plates with the active 
surface facing upwards. The obtained relationship in the 
form 5% = 0.54 x Ru,!” for 2.2 x IO4 < Ru, < 8 x 10’ is _ _ 

equations (10) and (I 1) reduce to 

very close to the equation of Goldstein H trl. LS]. 

t 
X 

FIG;. I. Scheme of the boundary layer. 

where 
P’= P+gpwJ’+Po. (5) 

The corresponding boundary conditions are 

Density differences in equation (2) can be expressed as 

MR - MB 
/‘-pr, = !‘A ,1/1 ___ =;,jx. (8) 

Substituting P’, which is obtained by integrating (2) 

from y to 6 with respect to J’, into (l), and regarding (8) 
we obtain 

Adding (9) to (3) integrating from 0 to S with respect 
to J’ and allowing for the boundary conditions (6) and 

(7) we get 

Proceeding in the same way with (4). we can finally 

where 

(12) 

After assumption of velocity and concentration profiles 
given by Eckert [7] 

11 = l&V/(1 -rl)2 (13) 

!‘a = l’Ac,(l -q)’ (14) 

and introduction of dimensionless variables 

where 

(13 

Gr, = ~2~ gaa3 3” (16) 

(17) 
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The above equations are first-order, non-linear 
differential equations. Thus, their solution requires two 
boundary conditions. One of them is determined by 
symmetry at .? = 0, i.e. where the Aow begins, which 
explicitly means that velocity at the plate centre must 
be zero. 

U,(O) = 0. (19) 

The second boundary condition involves the boundary- 
layer depth at the plate edge. 

Following the method described by Clifton and 
Chapman [8], the use was made of the analogy 
between the boundary-layer flow and the flow in open 
channels. Assuming the minimum boundary-layer 
depth at the plate edge obtained by application of the 
minimum allowable energy of flowing stream (details 
of derivation can be found in [S]), for dimensionless 
plate length .c at plate edge (e.g. when .\: = 1) the 
boundary-layer thickness can be expressed as: 

Thus, (20) is the second boundary condition for 
equations (17) and (18) to be solved. The mean 
Sherwood number based on the plate half-length u, has 
the form 

(21) 

As can be seen from (21), the determination of mass- 
transfer coefficient requires the knowledge of the 
variation of boundary layer thickness along the plate 
length : 6 = 6(S). 

Proceeding to the solution of (17) and (18), let us 
introduce a new independent variable: 

Yr = n;8 (22) 

Equations (17) and (18) become 

d8 
---+ 105sc Yl 

d?l = 6y: - 105 SC F3 
(23) 

dp, 60 _=- 
ds s( 1 - YAo) 

(24) 

with the boundary conditions 

Yl(O) = 0 (25) 

l/3 

[Y1(1)12’3. (26) 

The last condition results from substitution of integral 
form of equations (19H20). When the Lagrange method 
of solving differential equations is employed to just- 
derived boundary problem, we can write 

(27) 

(28) 

where 

120 
A= 

120+105Sc(l-Y.4”)’ 
(29) 

In order to find the unknown function 8 = 8(.?), 
equations (27) and (23) can be combined to yield 

Let us introduce a new independent variable 

SC.3 3-A 
sin’ t = zs 

i 1 = u3-/1, (31) 

The corresponding boundary conditions have now the 
form 

U(O)= 1 (32) 

(33) 

Separating the variables in (30). after substituting (31) 
and integrating from U (1) to U (0) with respect to U, 
we have 

.‘i-=l-- 

The relationship (34) obtained by means of simplifying 
substitution (31), is the final solution of problem under 
consideration. Now, when the integration is performed 
numerically on the computer, from the value defined 
by (33), with given step size, to U = 1. the profile of 
boundary layer thickness can be found with any 
accuracy. 

The problem of free-convection mass transfer from 
horizontal plates with active surface facing upwards 
and delivering the mass downwards has been 
investigated analytically by approximate integral treat- 
ment. The boundary-layer partial differential equations 
have been transformed to the set of ordinary diiferential 
ones, by integrating them across the boundary layer 
with assumed velocity and concentration profiles. 
Solution of resulting equations has been performed 
under the condition of the minimum allowable energy 
of flowing stream over the plate edge. Introduction of 
boundary condition at the plate edge, proposed by 
Clifton and Chapman [S], being the application of 
open-channel flow to the determination of minimum 
boundary-layer thickness, allowed to predict the finite 
boundary-layer depth at the plate edge. This minimum 
thickness formula seems to be the truest reflection 
of physical realities of the problem discussed; it enables 
a thorough study of velocity and concentration fields 
over the plate length. 
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At the same time the often-assumed zero boundary- appearing in the mass balance equation. Therefore. 
layer thickness simplification at the edges, widespread allowance for both specified parameters leads to many 
in analogous heat-transfer case, is avoided. variants of functions to be sought, the amount of which 

From the set of derived equations (17) (18) and is equal to the second power of respective heat transfer 
boundary conditions (19). (20) it follows that the solutions characterized only by one parameter, viz. 
determination of unknown functions li, = II, and Prandtl number. 
5 = 8( \-) depends on particular combination of In this paper all combinations of SC and I‘~,,. shown 

parameters: Schmidt number SC and initial concentra- in Table 1, have been taken into account. The figures, 
tion on the plate j’.‘,,,. It should be emphasized that based on computer output sheets, do not include all 

s 
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01 02 03 04 05 06 07 08 09 

x 

FIG. 2. Thickness of the boundary layer for SC = 2.5. 

1 1 I I I I I I I I 
0.1 0.2 03 04 0.5 06 07 06 09 IO 

x 

FIG. 3. Thickness of the boundary layer for ya,, = 0. I. 

the appearance of yAi, parameter is characteristic only obtained solutions, because of similar behaviour of 
for mass transfer and in the radical way distinguishes individual solution pairs. 
free-convection mass-transfer equations from cor- 
responding heat-transfer ones. This dissimilarity arises Table 1. Values of the parameters SC and ya,, 

directly from the difference in definition of the sC t 2.5 10 100 1000 2500 
boundary conditions on the plate surface in both 
transfer phenomena. When the heat transfer is con- ( 0.2 0.2 0.2 0.2 0.2 0.2 

sidered, the vertical velocity component on the plate 
surface must be zero, whereas in mass-transfer case 

!‘a,, 

i 

0.1 
0.01 
o.OQo5 

0.1 
0.01 
0.0005 

0.1 
0.01 
0.0005 

0.1 
0.0 I 
oGO5 

0.1 
0.01 
0.0005 

0.1 
0.01 
0.0005 

there occurs a constant vertical velocity component, 
. 
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As a solution pair, full set of results of any row and small Schmidt numbers at ya, = const., and in the range 

any column in parameters’ Table 1, is understood. So, of high yao values for SC = const. It can be seen from 

it may be said that the presented figures are Fig. 3 that boundary-layer thickness approaches zero 
representative in the whole range of parameters SC and at the limit of SC -+ co. 
ye”. The analysis of the obtained results, permits to 2. Figures 4 and 5 show the distributions of local 
draw up the following conclusions: Sherwood numbers along dimensionless plate length 

04 I I I I I I I I I 
01 02 0.3 0.4 05 06 07 08 09 

57 

FIG. 4. Variation of the local Sherwood number along the plate length X for SC = 2.5. 

01 02 03 04 05 06 07 06 09 IO 

ST 

FIG. 5. Variation of the local Sherwood number along the plate length ji for YAP = 0.1. 

1. Figures 2 and 3 show the dependence of boundary- X. For SC being constant the increase of initial 
layer thickness profile on the parameters SC and y,,. concentration yao brings about the decrease in 
When the value of SC is fixed (e.g. 2.5), the rise of the Sherwood number values; when yAU = const. the local 
concentration yAo causes the increase of boundary-layer Sherwood number increases with the rise of Schmidt 
thickness; on the other hand, when yAO remains number. The high values of Sherwood numbers in the 
constant, boundary-layer thickness decreases with the neighbourhood of plate leading edges accentuate the 
Schmidt number increase. Boundary-layer thickness significant influence of finite boundary-layer thickness 
variation is particularly accentuated in the range of depth on the mass transfer coefficient. 

"MT Vol. 19. No.8 -B 
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F,(;. 6. Velocity profile in the boundary layer for SC = 1.5 and .I’ !,, = 0.1 

ii 

FIG. 7. Velocity profile in tho boundary layer for SC, = 100 and J.~,, = 0 I 

3. The velocity distribution in the boundary layer 
presented in Figs. 6-8, for the exemplary combinations 
&/~a,, = 2.5/0.1, lOO/O.l and lOO/O.Ol, shows distinctly 
the essential effect of plate edges on the velocity profile. 
It is easy to observe that the main velocity increase 
appears above the dimensionless plate length X- = 0.95, 
practically at direct vicinity of leading edges, This fact 
results from abrupt decrease of boundary-layer thick- 
ness above the plate edge, revealed in Figs. 7 and 8 
with steep curve slopes near .V = 1. For increasing 

values of Schmidt number (Figs. 6, 7) the velocity goes 
up according to boundary layer thickness decrease on 
the whole plate length. The effect of initial concen- 
tration ya,, under condition SC = const. is very slight 
and-as it can be seen from Figs. 7 and &the velocity 
increases to a small extent when the values of J’,Q in- 
crease. Practically, these variations have such a small 

order of magnitude that without making any serious 

error they can be neglected. The above conclusions are 
valid for all the pairs of solutions. 

4. The concentration profile in boundary layer, 
shown in Figs. 9911, displays a similar trend as the 
velocity distribution (cf. above). 

Also here, the increase of concentration gradient 
near the plate edge, in consequence with minimum 
boundary-layer thickness, was observed. When 
Schmidt numbers are getting larger, concentration 
distribution curves become more steep, that means 

that the reduction of boundary layer thickness causes 
more violent concentration changes in any arbitrary 
point of the plate length. Figs. 10 and 11 present 
concentration profiles for SC/J’~,, = lOO/O.l and 
lOO/O.Ol, respectively. These figures indicate that the 
decrease of initial concentration yAU gives occasion to 



,z=o 378 

I 2 3 

Y 

FIG. 8. Velocity profile in the boundary layer for SC = 100 and yA,, = 0.01. 
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FIG. 9. Variation of the concentration profile in the boundary layer for SC = 2.5 and yAU = 0.1 

FIG. IO. Variation of the concentration profile in the boundary layer for SC = 100 and y,, = 0.1. 833 
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small increase of concentration gradient; practically 
it seems to be meaningless. The above remarks hold for 
all obtained pairs of solutions. 

5. Both local and average Sherwood numbers are 

proportional to one-fifth power of modified Rayleigh 
number; the values of constants appearing in cor- 

relation equations, for all pairs of solutions, are given 
in Table 2. As it can be seen from this table, for constant 

value of Schmidt number. the average mass-transfer 
coefficient increases when the initial concentration on 

the plate _ra,, decreases. On the other hand, for any row 

Table 2. Values of the constant in the correlation equation 
for themean Sherwood number. for individual combinations 

of parameters SC and !‘A,, 

SC 
!‘A,, 1 2.5 IO 100 1000 2500 

0.2 0.4355 0.4925 0.5601 0.5905 0.6024 0.6032 
0.1 0.4533 0.5131 0.5744 0.6169 0.6233 0.6236 
0.0 I 0.4687 0.5267 0.591 I 0.6242 0.6306 0.6318 
0.0005 0.4701 0.5442 0.5917 0.6247 0.6314 0.6327 

of Table 2 (!sA,, = const.) there is easily visible the 
recurring tendency of Sherwood number increase with 
the increase of Schmidt number up to SC = 100, 
becoming almost constant in the range of Sc > 100. The 
comparison of the results presented above for free- 
convection mass transfer from horizontal plates facing 
upwards and general conclusions concerning the 
analysed mass-transfer phenomena will be made in 
connection with the results of the opposite variant, 
viz. when the plate is facing downwards. in the next 
part of this paper. 

3. THE SOLUTION FOR THE 
DOWNWARD-FACING PLATES 

If the plate has the active surface directed down- 
wards and the mass is delivered also downwards, the 
derivation of the mathematical model is connected not 
only with the consequence of direction change of 

Y 

FIG. I I. Variation of the concentration profile in the boundary layer for SC = 100 and y,,, = 0.01. 

buoyancy forces acting, but also with quite different 
ways of problem analysis. The character of boundary- 
layer flow initiated at the plate edge and continued 
towards the plate centre with imposed boundary con- 

ditions, establishes a typical example of the possibility 
of using the similarity solutions method, presented in 
detail by Hansen [9]. 

When the previously assumed Boussinesq approxi- 
mations, concerning density, will be adapted to the 
present variant of free-convection mass transfer from 
horizontal plates, schematically shown in Fig. 12. the 

* 
X 

FIG. 12. Scheme of the boundary layer 

governing equations of steady two-dimensional flow 
become : 

where 

P'= P-gpn!‘+Po. 

(38) 

(39) 
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Equation (35), with allowance for (8), after differentiat- 

ing with respect to y, can be expressed as : 

a% 2 ~_+gP!= -,,!?4+$“” 
ihay ay2 a9 

Pw 

The corresponding boundary conditions for (40), (37) 
and (38) are given by 

y=O; n =O, ti= $0, y =y& 

au 

(41) 

y+mc;; u--to, y,+o, ---to. 
ay 

(42) 

Introducing the stream function 

+ 9c-g (43) 

and using the following similarity transformation 

$=x 3!5F(q), 4’A = yAu$b) (4) 

where 

rl = yx-2!5 (45) 

the velocity components appearing in equations (37), 

(38) and (40) can be written: 

u = X”5F’(?/) (46) 

9 = -:x-~‘~[~F(~)-~P/F’(~)]. (47) 

Inserting (46) and (47) into partial differential equations 

(38) and (40) we obtain a system of ordinary 
differential equations, which characterizes the discussed 

mass-transfer case: 

5vF”” + 3F”‘F + F”F’ = - 2gc(yA, 4’~ (48) 

5DA 4” + 3F+’ = 0. (49) 

To avoid dimensional values and, at the same time to 
get the solution in the form of well-known similarity 

groups, let us introduce into the above equations the 
following dimensionless functions: 

F = ~c~&)“~F, rj = (sc’&)-1’5q. (50) 

Equations (48) and (49) become as follows: 

5&F”” + 3F”‘F + F”F’ = _ 2Sc$Cj 

5@‘+3F& = 0 

The corresponding conditions are: for Q = 0 

(51) 

(52) 

4(O) = 1; F’(0) = 0; F(0) = ; 1’“,: @(O) (53) 
‘40 

for q--+ cc 

$(a) + 0; F’(n) + 0; F”(r)) + 0. (54) 

The last condition for f = 0 has an implicit form, 
resulting from the comparison of relationship (12) with 
equation (47). The local Sherwood number is obtained 
from 

/~A.YA, = -DAC $f 
( > 

o = -DAC~,+~‘(O)X-~‘~ (55) 

which, combined with (50) and integrated along the 
half-plate length, gives the average Sherwood number 

over the plate surface, appropriate for examined mass- 

transfer case. 

Sk= fi‘4.a ~ = -:(Gr,Sc)"'$'(O). 
DA.C 

(56) 

The solution of (51) and (52) with corresponding 
boundary conditions (53) and (54) has been carried out 
numerically. 

The method of adjoints used in the present work, is 
based on the integration of a set of differential 
equations adjoined with the equations being solved. 

The details associated with this method can be found 

in the work of Roberts and Shipman [lo]. 

3.1. Results and discussion 
The second case of horizontal plate orientation, viz. 

the active surface facing downwards, has been solved 
numerically by means of the method of adjoints. The 

governing equations have been transformed from their 
initial partial form to the ordinary differential ones by 
making use of the similarity analysis. Finally, the 
equations have been reduced to the system of six 
first-order, non-linear, differential equations and- 
with the corresponding boundary conditions-were 
subject to the numerical treatment. The choice of the 
method of adjoints was inspired by the possibility of 

using well-known procedures, such as the Runge-Kutta 
method, or matrix inversion, during its realization on 
the computer, and by the fact that it converges 

quadratically, similar to the Newton-Raphson method. 
Taking into account that the calculations are time- 

consuming (e.g. 19 iterations took 3 h or so), the results 
were obtained only for combinations of SC and )‘A,, 
parameters enclosed in the second column and third 
row of Table I. At the same time, the variation of 

velocity profile F’ and concentration 4, shown in Figs. 
13 and 14, should be treated as representative of plots 
for all the combinations of parameters because of small 
discrepancies between individual values. 

The principal results can be summarized as follows: 
1. The velocity distribution in the boundary layer 

has the same character as in the previously studied 

Fi 

FIG. 13. Velocity profile in the boundary layer for 
SC = 100 and ya,, = 0.01. 
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03- 

OZ- 

I 2 3 4 

7 

FIG. 14. Concentration profile in the boundary 
layer for SC = 100 and y,,,, = 0.01. 

first case. Comparing the values of function F’ given 
in Table 3, one can see that for increasing Schmidt 
numbers the velocity slightly decreases. On the other 

hand, when the values of Schmidt number remain 
constant, the rise of initial concentration brings about 

the increase of the velocity, but all these changes are 
rather small, so the influence of SC and yAa parameters 

on the boundary-layer velocity can be neglected. 

coefficient for Schmidt numbers growing up. slightly 

decreases, becoming almost constant in the range ol 
SC > 100. So, it seems to be quite reasonable to LI-cat 
the just-discussed mass-transfer problem ;I\ III- 
dependent of the values of Schmidt numbers. 

4. C‘OMPARISON OF THE:ORETI(‘AI. .\lrl) 
EXPERIMENT.AI. RE:StII,TS 

Figure 15 shows the lines representative for the 
experimental results obtained by authors of the papers 
[2], [Ml, as well as the theoretical data predicted 
(dashed lines), presented here for two variants of free- 

convection mass transfer from horizonlal plates. In 
order to compare most adequately the experimental 
and theoretical results, the theoretically calc~hted 

lines have been referred to the parameter set: SC, = I.5 
and Jo,, = 0.0005, since these values arc close to the 
conditions, under which the experiments with sublimat- 
ing naphthalene have been performed. The great 
similarity between the experimental results given in [4] 
and [S] and the theoretical ones. presented in this 
paper, is very well pronounced. 

The agreement of the correlation equations for the 
upper and lower active surface of horizontal plates, 
obtained in [4] and [S], corresponds exactly to the 

almost identical theoretical results for both plate 
orientation cases 

Table 3 

SC P(1) x IO2 f&l) x 102 

1 31.258 66.720 
2.5 30.449 66.874 

10 29.946 66.971 
100 29.785 67.010 

1000 29.169 67.014 
2500 29.761 67.014 

For Y.~,, = 0.01 
F(O) x 10” f;“(O) x IO’ 

- 56.546 52.682 
- 56.262 50.522 
- 56.074 49.339 
-56.014 48.975 
- 56.008 48.939 
- 56.007 48.936 

Y&I F’(l) x lo* 

0.2 3 1.445 
0.1 30.903 
0.01 30.449 
0.0005 30.402 

8(l) x lo2 

69.333 
67.979 
66.874 
66.758 

For SC = 2.5 
F(O) x lo4 F”‘(0) x I oz 

- 1244.2 5 I.298 
- 588.83 50.885 

- 56.262 50.522 
- 2.8005 50.482 

-43.841 
-41.207 
- 39.880 
- 39.484 
- 39.445 
- 39.442 

- 40.2’) 2 
-40.8 I I 
-41.207 
-41.244 

$(O) x I II’ 

-33.58X 
-33.41’) 
~ 33.30x 
- 33.272 
-3326X 
-- 37 76X _ . ._ 

(b’(O) x 10L 

~ 29.862 
-31.797 
--- 33.4 14, 
~ 33.58’) 

Note: The value )j = 1 in the functions F’(Q) and &Cj) has been chosen arbitrarily for compar~~n 
purposes. 

2. The concentration variation in the boundary- The lower values of the mass-transfer coefficient 

layer behaves similarly as in the first variant of the calculated theoretically, compared to the experimental 
plate orientation. From the values of function 4, data, can be explained by the approximate mathe- 
specified in Table 3, it can be seen that when Schmidt matical model being considered. The restriction of the 
number values grow larger, the concentration in the analysis to the case of two-dimensional flow is directly 
boundary layer slightly increases (concentration connected with the disregard of all leading edges, 
gradient decreases); also the increase of ya,, causes the which-as it has been previously pointed out-- have 
increase of the amount of diffusing component in the a significant effect on the value of mean Sherwood 
boundary layer. number. 

3. Local and average Sherwood numbers are 
proportional to one-fifth power of the product SC. Gr,. 
The values of constant associated with correlation 
equation increase with yAU diminishing. When y,& has 
a constant value equal to 0.01, the mass-transfer 

The scantiness of experimental data concerning the 
free-convection mass-transfer cases discussed, does not 
allow to perform a more extensive analysis of mass 
transfer from horizontal plates, so there is a necessity 
for further experimental research. 
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FIG. 15. Comparison of the results for free-convection mass transfer from horizontal plates. 
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TRANSFERT MASSIQUE EN CONVECTION NATURELLE 
SUR DES PLAQUES HORIZONTALES 

Resume-On etudie par voie theorique les processus de transfert de masse en convection libre sur des 
plaques horizontales. Dans les deux orientations opposees de la surface active de la plaque semi-infinie 
transferant la masse, c’est a dire orientation vers le haut et vers le bas, on a obtenu les lois de 
correlation correspondantes d’application simple qui dependent de deux parametres caracteristiques: 
SC (nombre de Schmidt) et y.d,, (concentration initiale sur la plaque). Dans le cas de I’orientation de la 
surface active vers le ham, la solution a ett obtenue par utilisation d’un traitement integral, tandis que 
dans le cas d’une orientation dirigee vers le bas la solution en similitude a ete utilisee. Les resultats 
obtenus dans chacun des deux cas caracteristiques ttudies sont tres proches fun de I’autre. La comparaison 

avec les donnees experimentales disponsibles a fourni un tres bon accord. 

STOFFUBERGANG VON WAAGERECHTEN PLATTEN BE1 FREIER KONVEKTION 

Zusammenfassung-Die Stoffiibertragung von waagerechten Platten durch freie Konvektion wurde 
theoretisch analysiert. Fur zwei entgegengesetzte Richtungen der massenabgebenden Oberflache eines 
halbunendlichen Streifens-aufwarts und abwlrts-wurden die Korrelationsbeziehungen in Abhangigkeit 
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von zwei charakteristischen Parametern, Sc-Schmidt-Zahl und J lA,, ~Anfangskonzentratlon an der 
Obe&che, erhalten. Ftir die aufwgrtsgerichtete aktive OberflPche wurde die Ltisung aufgrund einer 
Integraibehandlungerhalten, wihrend fiirdie abwGtsgerichtete aktive Ober%che eine iihnlichkeitsliisung 
herangezogen wurde. Die Ergebnisse der beiden untersucbten F%le sind einander sehr 5hnlich. Der 

Vergleich mit experimentellen Ergebnissen zeigt eine ziemlich gute Obereinstimmung. 

I’IEPEHOC MACCbl OT rOP~3O~TA~bHbiX IWlACTMH IlPM CBO6OfiHOii 
KOHBEKIJJM 

AHHOT~~HR -- TeopeT#Yecr<w Mccne2loeaH npouecc nepeHoca hlaccbl 0T rOpmQHTd.~bHblX nnacTL(H 

nf,H C~O6O~HO~ KO~BeKli~~. &IX DBq’X npOT~BOn0~O~~blX HanpaBn~H~~ 00~3y6eCKOtiCq~O~ IIIIaC- 

TMttbl IlOIl)‘YeHbI COOTBeTCTBYt0UWe KOppe,7flUMOHHble COOTtiOUleHMR, npeL,CTaBnntOUMe ‘GiBMCtl- 

MOCTb K03$+WieHTZi nepet:OCa MaCCbl OT aB)‘X XapaKTepHblX napZ+MeTpOB: XpMTepMR WMWlTa, 

SC, U jJao - HaYaJlbHOZi KOHUeHTPaUMM Ha nJlaCTtiHe. B CAyrae EIKTMBHOL? I’IOBepXHOCTN, o6paruerrnoii 
asepx, p’?“EHMe nOiiyWH0 MtlTeFpailbHbtM MWOIIOM, a +WUt aKTHBHOi? nOBepXHOCTH, OEjpWeHtd 

BHMI, np~Me~~CTC~ MeTOn ,,OaO6bltiX pelllWiit. nOIlyVeHHbte ~3j’IIbTaTbt ,&IVt 06onx C~ly%W3 

COBnallat0f OYCHb 611113h.O. CpaBtieHue MX C MMeKtUiHMMCIl ~KCnep~h~eHTanb~bl~~ ZIaHHb1Mti I@el 

aof3OnbttO xopouIee c~~TBWCTBW. 


